Myhre syndrome: the first case in Korea

Dongjin Lim¹, Jae Hyun Kim², Jieun Lee¹

¹Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Korea
²Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea

Address for correspondence: Jieun Lee, MD. Department of Pediatrics, Inje University Ilsan Paik Hospital, Inje University College of Medicine, 170 Juhwa-ro, Ilsanseo-gu, Goyang 10380, Korea.
Tel: +82-31-910-7101
Fax: +82-31-910-7108
E-mail: jieunlee@paik.ac.kr

Running title: The first Korean Myhre syndrome case
Myhre syndrome: the first case in Korea

Dongjin Lim¹, Jae Hyun Kim², Jieun Lee¹

¹Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Korea
²Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea

Corresponding author
Jieun Lee, MD
Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang 10380, Korea
Tel: +82-31-910-7101
Fax: +82-31-910-7108
E-mail: jieunlee@paik.ac.kr
Abstract

Myhre syndrome (MS) is a rare autosomal dominant disorder characterized by short stature, intellectual disability, skeletal anomalies, restricted joint mobility, distinctive facial dysmorphism, and deafness. Early diagnosis of MS is difficult because its features progress and become noticeable at school age. Recently, the \textit{SMAD4} gene was identified as the major gene responsible for MS. Herein, we report the first Korean case of MS after identification of a \textit{SMAD4} mutation by clinical exome sequencing. The patient was born as small for gestational age and she had typical clinical features of MS, including short stature, characteristic facial appearance, developmental delay, and selective mutism. She was diagnosed with central precocious puberty. Because of her precocious puberty and short stature, we subsequently administered combined recombinant human growth hormone and gonadotropin-releasing hormone agonist treatments, which resulted in improved height. While there have been 79 reported cases worldwide, to our knowledge, this is the first case of genetically confirmed MS in Korea.

Keywords: Myhre syndrome, \textit{SMAD4}, short stature, facial dysmorphism
Myhre syndrome (MS; OMIM 139210) is a rare autosomal dominant disorder characterized by short stature, intellectual disability, skeletal anomalies, restricted joint mobility, distinctive facial dysmorphism, and deafness.1) The skeletal anomalies include thickened calvarium, brachydactyly with cone-shaped epiphyses, shortened tubular bones, hypoplastic iliac wings and large pedicles of the vertebrae.2) Facial dysmorphism consists of maxillary hypoplasia, prognathism, short palpebral fissure, short philtrum and small mouth. Additional multisystem involvement is reported, including in the cardiovascular (congenital heart defects, pericardial effusion, constrictive pericarditis, restrictive cardiomyopathy, and hypertension), respiratory (choanal stenosis, laryngotracheal stenosis, and restrictive pulmonary disorder) and gastrointestinal (pyloric stenosis and duodenal stricture) systems.3) Patients with MS may develop various long-term and life-threatening complications.4) Recently, \textit{SMAD4} was identified as the major gene responsible for MS. Most patients have missense mutations at a single codon site (Ile500) of the \textit{SMAD4} gene.1) To date, there have been 79 reported cases worldwide.5) In this study, we report the first Korean case of MS.
Case report

The patient was a 13-year-old girl who was born to a 37-year-old female and a 38-year-old male.

She was delivered vaginally at 41 weeks of gestation and weighed 2.6 kg (-1.6 SDS). She had a healthy brother and there was no family history of short stature, mental retardation or genetic disorders. Her father’s height was 178 cm (1.2 SDS), and her mother’s height was 161 cm (0.5 SDS). At the age of 5 months, she was found to have a patent ductus arteriosus (PDA) and received PDA ligation.

Her early developmental milestones were below normal limits. While attending preschool, she was found to have learning disabilities, delayed motor development and impaired social interactions. She was speechless in preschool and diagnosed with selective mutism when she was 5 years old. She was referred to our neuropsychiatric department when she was 6 years old. A psychological test estimated her intelligence quotient and mental age to be 64 and 5.5 years, respectively. Her height had always remained below the third percentile.

At 8 years old, she was referred to the pediatric endocrinologic clinic due to her short stature. On physical examination, her height was 115.5 cm (-2.1 SDS) and her weight was 26.0 kg (0 SDS). She had a short neck, proptosis, blepharophimosis, clinodactyly, and a shield chest (Fig. 1).

Endocrinological tests showed normal IGF-1 level and thyroid function. The results of chromosome analysis were normal (46,XX). No pathologic findings were identified in mutation analysis of the PTPN11 gene for Noonan syndrome. The results of brain magnetic resonance imaging were normal. Skull radiographs showed a thickened calvarium and proptosis (Fig. 2A, 2B), a hand radiograph showed clinodactyly and that her bone age was appropriate for her chronological age (Fig. 2C), and a whole spine radiograph showed large vertebral pedicles and mild scoliosis (Fig. 2D, 2E). Clinical exome sequencing was performed, which revealed a c.1498A>G (p.Ile500Val) variant in the
SMAD4 gene, confirmed by Sanger sequencing. Further, familial genotyping (farther, mother, and younger brother) was performed by Sanger sequencing (Fig. 3). According to the trio test results (Fig. 3), the detected variant is genetically confirmed as a de novo variant. It is an additional evidence of pathogenicity according to American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines (PM6: De novo (assumed) in a patient with the disease and no family history).

Ophthalmologic examination, audiometric assessment, and laryngoscopy were performed to identify complications; such as hypermetropia, farsightedness astigmatism, strabismus, congenital cataract, hearing loss, and laryngotracheal stenosis. However, none were found.

At 8 years and 11 months old, physical examination revealed she had a height of 117.0 cm (-2.0 SDS) and a weight of 27.1 kg (-0.4 SDS; body mass index =19.8, 1.0 SDS). Her breast development was at Tanner stage II. A luteinizing hormone-releasing hormone stimulation test showed a peak luteinizing hormone level of 5.8 IU/L. Her bone age was 10.5 years. These findings indicated central precocious puberty.

At this time, she started gonadotropin-releasing hormone agonist (GnRHa) treatment for central precocious puberty. She also started recombinant human growth hormone (rhGH) treatment at the same time because she was born small for gestational age and no catch-up growth had occurred. GnRHa treatment was discontinued after about 3 years, and rhGH treatment was discontinued at the age of 14 years due to her bone age being 15 years. After 4-year GnRHa and 5-year rhGH treatments, her final height improved from -2.0 SDS at 8 years and 11 months old (117.0 cm) to -1.6 SDS at 14 years old (150.6 cm).
Discussion

MS is a rare developmental disorder affecting various systems over time. It is difficult to make an early diagnosis of MS because some of its features become apparent at school age. Multifocal investigation is required to prevent the appearance of potentially life-threatening complications.

MS shares some of its features with other syndromes. Differential diagnoses include disorders like acromicric dysplasia, geleophysic dysplasia and Weill-Marchesani syndrome. Acromicric dysplasia overlaps with MS in displaying short stature, thickened skin and joint stiffness, but MS is distinguished by facial features, intrauterine growth restriction, mental retardation, and the severity of muscular and cutaneous involvement as well as more frequent cardiac anomalies and hearing loss. Geleophysic dysplasia is a progressive disorder characterized by short stature, short hands and feet, and distinctive facial features, and is associated with organomegaly, which is rare in MS. Weill-Marchesani syndrome is also characterized by short stature, brachydactyly, and joint stiffness, but also features typical ocular disorders including microspherophakia, myopia, ectopia lentis, and glaucoma. While SMAD4 mutations have been identified in MS, FBN1 mutations have been identified in acromicric dysplasia, ADAMTSL2 and FBN1 mutations in geleophysic dysplasia, and ADAMTS10, LTPBP2 and FBN1 mutations in Weill-Marchesani syndrome.

The patient in this case exhibited typical features of MS, including short stature, intellectual disability, and facial dysmorphism, which were compatible to MS. Identification of a SMAD4 gene mutation led to the diagnosis.

MS was first described in 1981 as a rare condition defined by a combination of the following symptoms: short stature, limited joint mobility, facial and skeletal dysmorphism, muscular hypertrophy, thick skin, variable intellectual performance, and ophthalmological and cardiovascular complications. De novo heterozygous missense mutations in the SMAD4 gene have been
identified as an underlying mechanism of the syndrome, via the disruption of the transforming growth factor-beta/bone morphogenetic protein (TGF-β/BMP) signaling cascade involved in the embryonic development of connective tissue, and the cardiovascular and central nervous systems.4,11,12 SMADA4 is a central signaling component of the SMAD pathway that induces signals from TGF-β, a key mediator of fibrotic disease.13 TGF-β ligands are drivers of extracellular matrix deposition, creating a concentrated pool of pro-fibrotic factors at the site of injury.14

Typical morphological features of MS (including narrow palpebral fissures, prognathism, hypoplasia of the mid-face and clinodactyly) were observed during physical examination of our patient. Radiological signs related to the syndrome were also found (i.e., thick skull bones and mild scoliosis).

Other symptoms commonly found in MS include ophthalmological and auditory impairments, such as cataracts, disordered retina, pseudo-papilledema, and refractory abnormalities such as hypermetropia and astigmatism, together with variably-expressed hearing loss, although none of these were present in our patient.11,15 The majority of MS patients have delayed psychomotor development, autistic features and variably expressed intellectual disability; all of these were present in our patient.9,16 Missense mutations of the SMAD4 gene were among the novo mutations in 200 genes important in neurodevelopmental disorders.17 But the impact of the detailed pathomechanism of mutant SMAD4 protein and TGF-β/BMP pathways on central neurological condition is not yet known.

Over 70% of patients with MS have cardiovascular abnormalities, namely PDA, aortic or mitral valve stenosis, hypoplasia and/or stenosis of the abdominal aorta, pulmonary artery stenosis, pulmonary hypertension, and pericardial effusion.11,15 Our patient had PDA and underwent a PDA ligation operation.
Respiratory difficulties, including laryngo-tracheomalacia, bronchiolitis obliterans with organizing pneumonia, stenoses, and obstruction of both the upper and lower respiratory tracts such as that observed with hypertrophic adenoids are common findings in MS and may lead to chronic progressive pulmonary inflammation. Extrinsic interventions such as intubation often lead to the exacerbation of the existing stenoses due to defective tissue healing. None of these respiratory difficulties were identified in our patient.

Sexual development problems are frequently reported in MS patients, including abnormal onset of puberty, premature menarche, and secondary amenorrhea in females, and cryptorchidism and hypospadias in males. While sexual development problems have been reported in many patients, little is known about the mechanism of SMAD4 variants in MS cases that disrupt the hypothalamic-pituitary-gonadal axis. Our patient had central precocious puberty at 8 years and 11 months old. The combined treatment of GnRHa and rhGH for children with central precocious puberty is recommended for patients with growth retardation and precocious puberty. Our patient received the combined treatment and showed improved final height.

MS is a rare genetic disorder that is caused by a SMAD4 mutation. It should be considered a diagnosis when patients present with characteristic facial dysmorphism, joint contractures, brachydactyly, and short stature. Regular surveillance and anticipatory monitoring in MS is necessary, because of associated life-threatening cardiovascular and respiratory manifestations. Moreover, there may be a markedly abnormal fibroproliferative response to surgical intervention. Therefore, surgical intervention should be approached with extreme caution, and with as little invasion as possible, owing to the tendency for fibrosis development which may cause significant morbidity and mortality.

In conclusion, we described for the first time a Korean patient with MS, confirmed by the
identification of a SMAD4 gene mutation.
Conflict of interest

No potential conflict of interest relevant to this article was reported.

Ethical statement

Written informed consent was obtained from the parents of the child for publication of this case report.
Figure Legends

Figure 1. Clinical photos of the patient showing a short neck, blepharophimosis, and prognathism

Figure 2. Skeletal radiograph of the patient. (A, B) Skull X-rays showing thickened calvarium and prognathism. (B) A hand X-ray showing clinodactyly. (D, E) Spinal X-rays showing mild scoliosis and large vertebral pedicles.

Figure 3. Sanger sequencing confirmation of the heterozygous mutation of *SMAD4*. Mutation of c.1498A>G (p.Ile500Val) in exon 4 of SMAD is found by clinical exome sequencing and confirmed by Sanger sequencing analysis.

