
Review article

Acute lymphoblastic leukemia (ALL), currently the most common pediatric 
leukemia, has a high curability rate of up to 90%. Endocrine disorders are highly 
prevalent in children with ALL, and skeletal morbidity is a major issue induced by 
multiple factors associated with ALL. Leukemia itself is a predominant risk factor 
for decreased bone formation, and major bone destruction occurs secondary to 
chemotherapeutic agents. Glucocorticoids are cornerstone drugs used throughout 
the course of ALL treatment that exert significant effects on demineralization and 
osteoclastogenesis. After completion of treatment, ALL survivors are prone to 
multiple hormone deficiencies that eventually affect bone mineral accrual. Dual-
energy X-ray absorptiometry, the most widely used method of measuring bone 
mineral density, is used to determine the presence of childhood osteoporosis and 
vertebral fracture. Supplementation with calcium and vitamin D, administration of 
pyrophosphate analogues, and promotion of mobility and exercise are effective 
options to prevent further bone resorption and fracture incidence. This review 
focuses on addressing bone morbidity after pediatric ALL treatment and provides 
an overview of bone pathology based on skeletal outcomes to increase awareness 
among pediatric hemato-oncologists and endocrinologists.
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Introduction

 Acute lymphoblastic leukemia (ALL) is the most common cancer among pediatric and 
adolescent patients, and it accounts for major cancer-related deaths in childhood.1) Various 
factors, including exogenous (e.g., infection) or endogenous exposures (e.g., inflammation, 
oxidative stress) and genetic background, contribute to disease onset; ALL occurs in roughly 
1:2,000 children aged <15 years.2) After successful evolution of chemotherapy and clinical trials 
spanning 5 decades, the current curability rate of ALL is approximately 90% in resource-rich 
countries.3)

Endocrine disorders are highly prevalent among cancer survivors; recent data indicate 
that 40%–50% of survivors will develop at least one endocrinopathy once in their lifetime.4) 
Endocrine dysfunction is encountered in pediatric patients with ALL during and after therapy 
and might arise in the long term. Endocrine complications in children during and after ALL 
treatment include compromised growth, hyperglycemia, thyroid dysfunction, adrenocortical 
insufficiency, gonadal dysfunction, syndrome of inappropriate secretion of antidiuretic 
hormone, and bone demineralization.5)

Growing bone is vulnerable to the leukemic process and chemotherapeutic drugs. ALL is a 
classic malignancy for developing skeletal morbidities6) such as pain, fractures, decreased bone 
mineral density (BMD), and chronic impairment of bone function, which may be present not 
only during ALL diagnosis, but also as long-term sequelae following therapy.7) Osteoporosis 
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originating from ALL is triggered by multiple factors, including 
leukemic infiltration of bone, reduced bone strength due to 
immobility, poor growth induced by nutritional deficiency, 
and the use of various osteotoxic drugs.8) This review addresses 
bone morbidity after pediatric ALL treatment and provides 
an overview of bone pathology based on skeletal outcomes to 
increase awareness among pediatric hemato-oncologists and 
endocrinologists.

Bone morbidity at ALL diagnosis

Lengthwise bone growth in children with ALL is not different 
from that in healthy children, whereas bone density is reduced 
by lower bone turnover.9) Defective mineralization and reduced 
bone formation are recognized in most children with ALL 
prior to treatment initiation.9) Cytokines released by leukemic 
cells trigger osteoclast-mediated bone resorption, which causes 
bone pain and osteopenia, and bone turnover marker levels are 
diminished before treatment.10) This indicates that the leukemic 
process itself is a predominant risk factor for decreased bone 
formation.

Juxta-metaphyseal lucent bands and osteolytic lesions on 
plain radiography are present in 70% of ALL cases at initial 

diagnosis and occur as part of the leukemic process.11) Tumor-
associated factors upregulate receptor activator of nuclear factor 
kappa-β ligand, resulting in activation of osteoclasts, triggering 
of osteolytic lesions, and destruction of endochondrons.12) Bone 
pain is a common presenting symptom of childhood ALL that 
occurs in over 40% of cases, and it is the most common sign 
of undermineralized bone. Bone pain mainly occurs due to 
uncontrolled osteoclastic activity causing altered sympathetic 
nerve fiber regulation and neuropeptide release.13,14) Periosteal 
reaction (<19%), low bone mass (<40%), and fractures (<10%) 
are consecutive results due to infiltration of leukemic cells in 
bone.9)

Definition of low bone mass

The definition of osteoporosis remains too controversial to be 
applied to children and adolescents, and densitometric outcome 
does not fully confirm diagnosis. The International Society of 
Clinical Densitometry (ISCD) defines osteoporotic children 
based on the presence of fracture and lowered densitometric 
standard deviation score for age and sex. The ISCD definition 
for osteoporosis in children is based on a clinically significant 
fracture history and a BMD z-score ≤-2.0 (Table 1) at preferred 

Table 1. Considerations for the assessment of skeletal health in children and adolescents
Definition of osteoporosis
Finding of 1 or more vertebral compression (crush) fractures in the absence of local disease or high-energy trauma
Presence of both (A & B)
  A: clinically significant fracture history ((1) or (2))
    (1): ≥2 long bone fractures by age 10 years
    (2): ≥3 long bone fractures at any age up to age 19 years
  B: BMD z-score ≤-2.0
DXA assessment (BMC and aBMD)
Should be performed when the patient may benefit from interventions to decrease their elevated risk of a clinically significant fracture and the results 
  will influence management
Should not be performed if safe and appropriate positioning of the child cannot be assured
Preferred site:
  Poster-anterior spine and total body less head
Feasible sites of measurements:
  Lumbar spine for 0–5 years of age
  Whole-body for ≥3 years of age
DXA interpretation and reporting
Adequate reference data should be available
Additional possible sites: proximal femur, 33% radius (1/3 radius), lateral distal femur
Minimum interval for follow-up is 6–12 months
For those who have short stature or growth delay, results should be adjusted based on height z-score
VF assessment
  Genant semiquantitative method should be used
  Following VF assessment, additional spine imaging such as quantitative computed tomography should be considered in the following circumstances:
    Vertebra that are technically un-evaluable (not sufficiently visible)
    A single, Genant grade 1 VF
    Radiographic findings that are not typical for an osteoporotic VF (suspected destructive inflammatory or malignant processes, congenital 
      malformations, acquired misalignments, or dislocations)
BMD, bone mineral density; DXA, dual-energy x-ray absorptiometry; BMC, bone mineral content; aBMD, areal bone mineral density; VF, 
vertebral fracture; z-score, standard deviation score.
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sites.15) A clinically significant fracture history indicates 1 or 
more of the following: (1) ≥2 long bone fractures by age 10 years 
or (2) ≥3 long bone fractures at any age up to 19 years.15) The 
presence of ≥1 nontraumatic vertebral compression (crush) 
fracture is indicative of osteoporosis in children.15)

Nontraumatic vertebral fracture

Nontraumatic vertebral fracture (VF) is a commonly encoun-
tered skeletal manifestation in children and adolescents with 
newly diagnosed ALL that occurs in as many as 16% of cases.9) 
Cummings et al. reported a 4-year cumulative incidence of VF 
following ALL diagnosis of 26%, with T5–7 as the most severely 
fractured levels.16) Back pain can occur in <55% of children at 
ALL diagnosis, and most fractures occur at thoracolumbar (31%, 
T12–L2) and midthoracic (24%, T6–T7) levels.17) Because most 
children do not manifest with back pain at initial presentation, 
this is under-recognized.18) Moderate or severe VF can also 
occur asymptomatically; therefore, routine vertebral assessment 
as systematic surveillance on ALL diagnosis is fundamental.16) 
VF can be diagnosed by conventional radiograph, and its 
assessment is useful as VF severity correlates with the degree of 
lumbar spine BMD.

Imaging methods for evaluation of bone mass

Conventional radiology, hand examination, and morpho-
metric study of the spine are used to examine trabecular 
thickness and cortical thinning.19) VF can be recognized by 
measuring the heights of vertebral bodies on a conventional 
radiograph. To visualize radiologic signs of reduction in bone 
density, a 30%–40% loss of mineralized bone is necessary.19) In 
1993, a "semiquantitative method" grading system was proposed 
to assess VF based on vertebral shape and reduction in height 
by qualitatively and quantitatively assessing osteoporotic 
vertebral deformity.20) Depending on the degree of reduction in 
vertebral body height, grading reflects the severity of VF. Other 
scoring systems for assessment of VF through conventional 
radiography, such as an algorithm-based quantitative method, 
Koerber’s technique, and a semiautomated technique, are used 
in clinical practice.21,22) Yet, there is no reliable method available 
specifically designed for pediatric use that encompasses normal 
physiologic variation and observer variability. Thus, current 
techniques need further improvement to develop software tools 
to diagnose VF in the pediatric population.23)

Quantitative computed tomography (QCT) is beneficial 
because it measures bone volume and computes volumetric 
BMD, unlike planar images generated by dual-energy X-ray 
absorptiometry (DXA); it also differentiates dense cortical 
bone from metabolically active trabecular bone.24) With 
good accuracy and precision, QCT causes exposure to low 
radiation dose (approximately 3 microsievert per scan) and 
enables functional evaluation of pediatric bone disease.25) QCT 
can measure both axial and appendicular sites, and a table-
top peripheral QCT device can measure the radius, tibia, or 

femur in children.26) However, pitfalls of QCT include limited 
evaluation of appendicular bone with low turnover, low spatial 
resolution, and exact reposition of the extremity required for 
follow-up.25)

DXA remains the most commonly used imaging modality 
for measuring BMD because it confirms low bone mass. DXA 
determines the amount of bone mineral in a specific region 
by differential absorption of X-rays of 2 different energies and 
calculates the depth and composition of adjacent soft tissue to 
generate measurements of fat and lean mass.27) Measurable sites 
in adults are the posterior-anterior spine and hip, and posterior-
anterior spine and total body without head are the preferred sites 
for performing bone mineral content and areal BMD (aBMD).15) 
DXA only measures the 2 dimensional density of bone and 
not 3 dimensional volumetric density.28) Hence, because the 
depth of bone is not considered, DXA is size-dependent and 
overestimates aBMD in large bones and underestimates aBMD 
in small bones. This is challenging for children in whom 
chronic disease stunts skeletal growth.29) Furthermore, height 
and bone age-adjusted aBMD z-scores are more reliable values 
as they avoid pitfalls such as low aBMD z-scores due to short 
stature.30,31) BMD differs according to age, sex, race, ethnicity, 
and lifestyle, requiring appropriate references for the pediatric 
population. Lim et al.31) released BMD reference values in 
healthy Korean children and adolescents were released in 2010.

Bone morbidity during leukemia treatment

Administration of chemotherapeutic agents also destroys 
bone formation, and the adverse effects of therapy, rather 
than the anti leukemia response, should be addressed 
during treatment. ALL treatment usually spans 3 years and 
comprises 3 phases of chemotherapy (remission-induction, 
consolidation, and maintenance), whereas hematopoietic stem 
cell transplantation (HSCT) with or without irradiation remains 
an option for patients at very high risk.2) Among current 
regimens of chemotherapy against ALL, osteotoxic drugs such 
as glucocorticoids, methotrexate, L-asparaginase, daunorubicin, 
and vincristine, as well as irradiation treatment, are predominant 
risk factors that equally cause deficient BMD. The accumulated 
dosage and duration of therapy result in bone destruction (Table 
2).

1. Glucocorticoids

Prolonged and repetitive high-dose glucocorticoids 
administered throughout treatment significantly contribute 
to bone morbidity.32) Glucocorticoids (prednisolone and 
dexamethasone) are cornerstone drugs in first-line ALL 
treatment and may be used throughout the entire treatment 
period. Glucocorticoids are most highlighted during the 
remission-induction phase, when they have a strong cytotoxic 
effect on cancer cells by eliminating 99% of disease tissue.33) 
During central nervous systemic-directed therapy, the success 
of  ALL treatment depends on effective central nervous 
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systemic leukemia control, and glucocorticoids play an essential 
role along with prophylactic cranial irradiation.34) In graft-
versus-host disease, an immune reaction occurring acutely 
or chronically after HSCT, glucocorticoids are used for both 
prophylaxis and treatment.

Glucocorticoid excess alters bone remodeling by increasing 
bone resorption and decreasing bone formation, leading to net 
loss of bone volume.35) During treatment, glucocorticoids and 
multiple chemotherapeutic drugs suppress bone formation 
markers. Defective bone mineralization is affected by 
decreased production of serum calcitriol.9) Glucocorticoids 
trigger hypercalciuria by increasing renal calcium excretion 
and decreasing intestinal calcium absorption and tubular 
reabsorption of phosphate, resulting in a negative calcium 
balance.36) Osteocytes and osteoblasts are direct targets of 
glucocorticoid action via reduced osteoblast precursors 
combined with glucocorticoid-induced proapoptotic effects on 
osteoblasts.37) Conversely, osteoclasts prolong their lifespan, and 
osteoclastogenesis is enhanced by glucocorticoid administration 
causing early and rapid bone loss.38,39)

Systemic glucocorticoid therapy is associated with an initial 
increase in bone resorption and subsequent reduced bone 
formation, resulting in microarchitectural deterioration and 
increased fracture risk.40) Compared to cortical bone, trabecular 
bone in children is more sensitive to the detrimental effect 
of glucocorticoids. Duration and dosage of glucocorticoids 
negatively correlate with BMD, and the lumbar spine is the most 
affected location.39) Bone loss assessed by DXA can be 5%–15% 
during the first year of treatment, and the major determinant 
of BMD is cumulative dose of glucocorticoids.41) The greatest 
reduction of bone mineral content mostly occurs in the first 
6–8 months of chemotherapy, although the chance of bone 
mass recovery depends on age and duration of glucocorticoid 
therapy. Pubertal children show significant decrements in spinal 
BMD compared to children who are prepubertal at diagnosis.42) 
Prednisolone-equivalent corticosteroid doses in excess of 9 g/m2 

during ALL treatment pose a risk of deficits in BMD persisting 
into adulthood.43)

VFs are common manifestations occurring in 16% of children 
at or within a month of ALL diagnosis, and incidental fractures 
peak at 12 months of treatment followed by a gradual decline 
in frequency.6) Nontraumatic VFs are asymptomatic; therefore, 
radiographic screening is the only method of surveillance. The 
presence of VF at ALL diagnosis is critical since the odds of an 
incidental fracture over the treatment period are associated 
with spinal BMD at baseline.44) In one study evaluating a 
dexamethasone-based protocol, the 3-year cumulative frac-
ture incidence was 18% in pediatric patients with ALL.45) 
Glucocorticoid exposure is a strong clinical predictor over the 
4-year incidence of VF, as incidence declines with a concurrent 
decrease in glucocorticoid exposure.16) VF can also lead to 
height loss in pediatric patients with ALL, and every 10-mg/m2 

increase in average daily glucocorticoid dose is associated with 
height z-score decrement of 0.3.46)

2. Methotrexate

By combining inhibition of purine and pyrimidine synthesis 
and reduced proliferation of  antigen-dependent T cells, 
methotrexate has proven efficacious during all phases of 
ALL therapy.47) Methotrexate reduces bone mineralization by 
impairing osteoblast function, responsiveness, and number to 
suppress bone formation and subsequent osteopenia.9) Short-
term administration of therapeutic doses of methotrexate in 
animal studies caused a significant reduction in trabecular bone 
volume via cytotoxic effects on osteoblasts, whereas osteoclast 
activity was less disturbed.11) Methotrexate is associated 
with reduced proliferation of preosteoblasts and osteoblasts, 
concurrently increasing osteoclast formation in the bone 
marrow and elevating osteoclast density on the bone surface, 
which eventually causes bone pain and fractures.43) High-dose 
methotrexate in children with ALL decreases bone alkaline 
phosphatase and C-terminal propeptide of type I procollagen 
(marker of type I collagen synthesis), and increases C-terminal 
telopeptide of  type I collagen (marker for breakdown of 
type I collagen).48) Despite long-term methotrexate therapy, 
discontinuation of  the drug improves both clinical and 
radiographic manifestations of bone morbidity.49)

3. Other chemotherapeutic drugs

Other chemotherapeutic drugs, such as asparaginase and 
daunorubicin, contribute to reduced bone mineralization. 
L-asparaginase converts L-asparagine to aspartate and 
ammonia, thereby depleting serum L-asparagine and 
starving leukemic cells, leading to cell death.50) Therapy 
with L-asparaginase increases plasma concentration of 
glucocorticoid (dexamethasone), leading to higher risk of 
osteonecrosis.51) Daunorubicin, an anthracycline, is admini-
stered to patients at high risk. Daunorubicin prevents 
deoxyribonucleic acid replication via deoxyribonucleic acid 

Table 2. Triggering factors of bone morbidity in children and 
adolescents with acute lymphoblastic leukemia
At ALL diagnosis
  Back pain prior to VF screening
  Reduced BMD
    Low bone turnover markers
    Infiltration of leukemic cells mediated cytokines
  Age of ALL diagnosis near to peak bone mass period
During ALL treatment
  Osteotoxic drugs
    Glucocorticoids
    Methotrexate
    L-asparaginase
    Daunorubicin
    Vincristine
  Irradiation
  Malnutrition and lack of physical activity
ALL, acute lymphoblastic leukemia; BMD, bone mineral density; VF, 
vertebral fracture.
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topoisomerase II inhibition, deoxyribonucleic acid damage 
via formation of reactive oxygen species, and programmed cell 
death.52) Anthracycline has deleterious effects on skeletal muscle 
tissue (muscle weakness, fatigue, and dysfunction) and causes 
reduced alkaline phosphatase activity in human osteoblast-
like cells with 58% of control values, leading to adverse effects 
on bone mineral accrual.52,53) Vincristine, a vinca alkaloid that 
disrupts microtubular formation, reduces type 1 collagen 
synthesis, induces neuropathy leading to poor balance, and 
increases the risk of falls.54)

4. Irradiation

Bony structures previously exposed to radiation are at risk 
for poor growth, and the risk is greater with higher radiation 
dosage and younger age at exposure.4) Growth hormone (GH) 
deficiency and hypogonadotropic hypogonadism induced 
by impaired hypothalamus-pituitary axis following cranial 
irradiation are associated with impaired BMD, whereas 
the direct osteotoxic effects of irradiation remain unclear. 
Decreased vertebral density was observed in patients with ALL 
who received cranial irradiation, albeit not in a dose-dependent 
manner.55) Conversely, no significant differences in bone area 
and bone mineral content were observed between irradiated 
patients and non-irradiated patients.56) Patients who received 24 
Gy of cranial irradiation had low BMD, whereas patients who 
received 18 Gy had a BMD that did not differ from those who 
received no radiation therapy.57) Therefore, deficient gonadal 
steroids, GH, and insulin-like growth factor (IGF)-1 from 
impaired hypothalamus-pituitary axis should be considered 
rather than the dosage or duration of cranial irradiation. The 
independent effects of chemotherapy should be elucidated to 
understand the direct effect of cranial irradiation on BMD.

5. Malnutrition and lack of physical activity

Optimization of nutrition is another critical factor of bone 
health during ALL treatment. Low serum calcitriol concen-
tration after therapy completion correlates with reduced lumbar 
BMD regardless of normal calcium homeostasis.11) Cachexia 
and being underweight result from poor caloric intake, nausea, 
emesis, and abdominal discomfort during chemotherapy 
followed by decreased bone formation. While high-dose 
glucocorticoid therapy leads to increased appetite during ALL 
treatment, a focused diet rich in only calcium and vitamin D is 
challenging in the pediatric age.

With adequate nutritional support, physical activity is 
an inevitable factor in BMD. During chemotherapy, overall 
physical activity diminishes; promotion of physical activity and 
exercise may ameliorate bone mass loss.9) Exercise capacity and 
levels of physical activity were positively correlated with bone 
mineral content of the hip and spine.10) Nevertheless, there are 
no recommendations for specific levels and intensity of physical 
activity and discriminating factors from usual care.58) During 
ALL treatment, children have reduced activity and diminished 

strength and fitness. Therefore, the clinical aim of physical 
activity via exercise is more focused on preventing bone fracture 
and osteoporosis than sustaining sufficient bone mineral 
accrual.

Bone recovery after ALL treatment

Despite direct leukemic effects and exposure to multiple 
osteotoxic treatment regimens, which altogether induce 
demineralization, the most rapid skeletal development occurs 
during childhood and adolescence. Skeletal recovery after 
therapy completion in children with ALL is crucial, while bone 
metabolic status continues to change significantly in this age 
group.

Survivors begin to recover lost bone mass after ALL therapy, 
while those who do not reach their optimal bone mineral 
acquisition experience critical bone loss 2 years following 
therapy cessation.7) Associated clinical factors include gluco-
corticoid exposure and baseline lumbar spine BMD z-scores, 
which are both associated with VF and non-VF.59) The 
BMD z-score for the lumbar spine and femoral neck reaches 
osteoporotic range 6 years after therapy; despite BMD increase 
after treatment completion, changes in z-scores do not reveal 
full recovery.60) Changes in cortical dimensions and BMD might 
depend on the interval after treatment cessation since early 
increase in cortical dimensions contributes to transient declines 
in cortical BMD, reflecting a longer time necessary to fully 
mineralize newly formed bone.61) Yet, the extent of bone mass 
recovery in children after termination of therapy is unknown.

ALL survivors treated with cranial radiotherapy, craniospinal 
radiotherapy, and total body irradiation are prone to hypopi-
tuitary hormone deficiency and growth, and gonadal hormones 
predominantly act on bone mineral accrual. GH promotes 
bone formation via IGF-1 by stimulating osteoblastic activity.43) 
Glucocorticoids alter bone health via decreasing the synthesis 
of IGF-1 and gonadotropins to result in deficiency of GH 
and sex steroid hormone.41,62) Radiation directly affects the 
growth plate and causes GH deficiency and growth retardation. 
GH therapy is beneficial for BMD, bone geometry, and body 
composition and improves bone health.62) Based on safety and 
efficacy, guidelines recommend GH replacement after a 1-year 
disease-free state in childhood cancer survivors with confirmed 
GH deficiency.4) If not properly treated, primary or secondary 
hypogonadism compromises bone mineralization. Leydig cell 
failure is common if males are exposed to testicular radiation 
doses in excess of 20 Gy, whereas females older than 10 years 
of age who receive 10 Gy of fractionated total body irradiation 
may experience ovarian failure.43) Androgen receptors are 
located in growth plate osteoblasts and exert the anabolic effects 
of testosterone on bone, while estrogen has more direct activity 
in skeletal maturation and mineralization.63) Compared to 
those who completed treatment with standard chemotherapy 
regimens, HSCT recipients are at higher risk of treatment-
associated GH deficiency and hypogonadism and subsequent 
poor bone acquisition.
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Vertebral reshaping is a growth-dependent bone remodeling 
phenomenon that involves acquiring normal vertebral 
dimensions following VF, which does not occur beyond epiphy-
seal fusion.6) Seventy-seven percent of ALL children with 
VF had complete reshaping at the last follow-visit, 18% had 
incomplete reshaping, and 4% were not reshaped over 6 years 
of follow-up.59) Therefore, spontaneous vertebral reshaping is 
an opportunity for osteoporotic children to be conservatively 
observed, rather than to initiate pharmacologic intervention.64)

Management and recommendations

Although many clinicians recommend calcium and 
vitamin D supplementation to remediate osteoporotic 
change, their role is controversial.65) Calcium- and calcitriol-
retarded BMD loss in children receiving glucocorticoids was 
less in patients taking calcitriol and calcium compared to 
those taking placebo; this could be considered a preventive 
measure when supplementation begins simultaneously with 
glucocorticoid initiation.66) Conversely, 2 years of vitamin D 
and calcium supplements in children with ALL after treatment 
completion did not significantly increase BMD compared to 
the placebo group.65) There is no specific recommendation 
guideline for dosage of calcium and vitamin D supplements 
for children with ALL; therefore, 400 IU/day of vitamin D and 
500–1,300 mg/day of calcium intake are recommended to 
prevent any deficiency.67,68) Particularly, calcium and vitamin 
D should be adequate for effective pharmacologic treatment 
of osteoporosis since low calcium and cholecalciferol levels 
represent low bone mass.69) Bone metabolic markers should be 
monitored throughout supplementation to avoid any episode of 
nephrolithiasis or urolithiasis from calcium excess.

Children with VF and/or low BMD and ≥2 long bone frac-
tures are considered for intravenous bisphosphonate (BP) 
therapy using potent antiresorptive agents, which have shown 
promising outcomes for treating VF in pediatric ALL patients 
(Fig. 1).6,8) BPs are synthetic analogues of pyrophosphate widely 
used in primary and secondary osteoporosis management.70) 
BPs prevent osteoclastic bone resorption and relieve bone 
pain, while their use in prevention remains limited.6) An 
Australian group recommends serum calcidiol level should 
be >50 nmol/L prior to the first BP infusion and maintained 
postinfusion.8) Increased BMD, reduced bone pain, and 
improved vertebral body shape were observed after BP use in 
patients with hematologic malignancy and in bone marrow 
transplant patients with graft-versus-host disease, although 
there is limited case-control data.8) Optimal agents, dose, and 
duration remain controversial, although intravenous agents 
may be more effective than oral agents.64) Pamidronate (9 mg/
kg/yr, 4–6 divided doses) and zolendronate (0.05–0.1 mg/kg/
yr, 2–4 divided doses) are widely used BPs.8,64) Adverse effects 
are generally well-tolerated, although transient myalgia, bone 
pain, fever, and nausea are common after the first infusion.64) 
BP therapy is the first-line treatment option for adults with low 
bone mass who receive glucocorticoid therapy for >3 months; 

however, there are insufficient data to support the efficacy of 
BPs in children exposed to excess glucocorticoids.39) Although 
the long-term beneficial effects of BP therapy are currently 
unknown, it remains the optimal drug of choice for children 
with ALL since BPs can be used during steroid dosing and 
improve bone health despite other treatments.

Both calcitonin and teriparatide are effective at delaying the 
progression of osteoporosis. Calcitonin inhibits osteoclastic 
activity in bones, while teriparatide enhances bone forma-
tion.69,71) However, the use of calcitonin and teriparatide in 
osteoporotic patients with ALL is limited, and their benefits 
compared to oral calcium and vitamin D or BP therapy are 
questionable.

Mobility and exercise during and after ALL treatment may 
be beneficial to bone mass acquisition. Exercise programs or 
physical activity interventions include exercises to maintain 
hand and leg function, stretching exercises to maintain ankle 
dorsiflexion mobility, and short-burst high-intensity exercises; 
outcomes of these programs revealed a significant positive 

Fig. 1. Flow chart depicts the use of bisphosphonates and overall monitoring 
recommendations for children and adolescents with acute lymphoblastic 
leukemia induced osteoporosis. *Bi-annual dual-energy X-ray absorptiometry 
should be considered if factors associated with bone morbidity worsen. 
BP, bisphosphonate; BMD, bone mineral density; DXA, dual-energy X-ray 
absorptiometry, VF, vertebral fracture; z-score, standard deviation score.



7

Ahn MB and Suh BK • Bone morbidity in pediatric leukemia

www.e-apem.org

intervention effect on total body BMD.72) Intrahospital super-
vised exercise may also considerably improve children’s 
quality of life (QoL) and overall health status during treatment 
periods.73)

Conclusion

ALL is the most commonly encountered cancer during the 
pediatric and adolescent period, and bones are vulnerable 
to the leukemic process. Treatment of  various skeletal 
complications diminishes QoL. From diagnosis until several 
years posttreatment, ALL may threaten bone health by 
triggering bone demineralization and reducing bone formation. 
Routine screening and monitoring of skeletal conditions via 
radiographic and laboratory assessment can lead to prompt 
recognition and intervention to prevent adverse long-term 
sequalae. Factors contributing to bone morbidity include 
chemotherapeutic drugs, irradiation, malnutrition, and lack 
of physical activity, while accumulated dosage and prolonged 
exposure to these factors results in bone destruction. Although 
long-term outcomes such as pituitary hormone deficiency after 
cranial irradiation may be irreversible, spontaneous recovery 
of bone mass is a privilege of this age group. BP administration, 
supplementation with adequate vitamin D and calcium, and 
regular exercise are beneficial options for optimal bone mineral 
accrual in pediatric patients with ALL. There is no definitive 
method for bone morbidity assessment and treatment in 
children with ALL. Our goal to combine up-to-date diagnostic 
and therapeutic options to provide appropriate screening to any 
patient overcoming ALL. Healthcare-givers who are responsible 
for treating these patients should consider bone morbidity 
throughout the entire disease course.
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