
Review article

The current gold-standard management of hyperglycemia in individuals with type 1 
diabetes mellitus (T1DM) is insulin therapy. However, this therapy is associated with 
a high incidence of complications, and delaying the onset of this disease produces 
a substantially positive impact on quality of life for individuals with a predisposition 
to T1DM, especially children. This review aimed to assess the use of gamma-
aminobutyric acid (GABA) to delay the onset of T1DM in children. GABA produces 
protective and proliferative effects in 2 ways, β cell and immune cell modulation. 
Various in vitro and in vivo studies have shown that GABA induces proliferation of β 
cells, increases insulin levels, inhibits β-cell apoptosis, and suppresses T helper 1 cell 
activity against islet antigens. Oral GABA is safe as no serious adverse effects were 
reported in any of the studies included in this review. These findings demonstrate 
promising results for the use of GABA treatment to delay T1DM, specifically in 
genetically predisposed children, through immunoregulatory effects and the ability 
to induce β-cell proliferation.
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Highlights

·  Gamma-aminobutyric acid (GABA) may delay type 1 diabetes mellitus onset by 
promoting β-cell proliferation and modulating immune responses.

·  GABA therapy can elevate insulin levels, inhibit β-cell apoptosis, and suppress T helper 1 
cell activity against islet antigens.

·  Clinical studies have shown no serious adverse effects of oral GABA, making it a 
promising preventative measure for high-risk pediatric populations.

Introduction

Type 1 diabetes mellitus (T1DM) is a severe autoimmune disorder resulting from 
autoantigen-specific T cells, leading to the elimination of pancreatic β cells that causes 
hyperglycemia due to insulin deficiency in the blood.1) Predictions indicate a 60% to 107% 
increase in global T1DM cases by 2040.2) The highest prevalence of T1DM is found in children 
under 14 years of age, particularly those aged 4–6 and 10–14 years.3) Managing T1DM 
complications and optimizing glucose levels are crucial. The current therapy involves lifetime 
insulin administration and lifestyle changes but has not entirely prevented complications, 
especially in children. A multicenter study with 10,000 participants reported only 13.1% 
achieved target glycated hemoglobin A1c (HbA1c) levels.4)

Gamma-aminobutyric acid (GABA) has immunomodulatory effects and induces β-cell 
regeneration,including the modulation of insulin secretion through GABA subtype B 
(GABAB) receptor stimulation.5,6) GABA is orally available and safe for the central nervous 
system (CNS). GABA holds great promise in delaying T1DM onset in children, considering its 
minimal side effects and lack of serious adverse events during treatment.7,8) With its beneficial 
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immunomodulatory and β-cell regeneration effects, GABA 
represents a promising treatment option.

Type 1 diabetes pathophysiology

The pathogenesis of T1DM can be separated into a series 
of phases that starts with the identification of autoantibodies 
proceeding to cell death, dysglycemia, and hyperglycemia-
related symptoms.9) The cause of cell-targeted autoimmunity 
involves a confluence of genetic and environmental variables 
that either initiate or facilitate the immune reaction against the 
cells.10) The definitive cause of T1DM has not been determined; 
the variability of  the condition is a challenging element 
when identifying disease-inducing variables. The numerous 
particular autoantibodies leading to autoimmunity are linked 
with diverse genetic susceptibility factors that reflect this 
variation.11,12) T1DM is characterized by selective involvement 
of βcells without obvious pathogenic abnormalities of other 
Langerhans cells, such as α-cells, δ-cells, and pancreatic 
polypeptide cells.13) High insulin autoantibody levels indicate 
early diabetes development in animals and young patients.14) 
Therefore, mutations in the insulin gene promoter probably 
lead to a thymus with impaired central tolerance and the release 
of insulin-reactive T cells that direct the growth of autoreactive 
B cells.15) Self-antigens secreted by damaged β cells are acquired 
by antigen-presenting cells (APCs), which then transport these 
materials to pancreatic lymphatic system and are passed on 
to autoreactive T lymphocytes. These T cells are uncontrolled 
components that are activated by genetically determined thymic 
deletion failures in combination with inadequacies in processes 

intended to potentiate peripheral immunological tolerance.16) 
Following the inadequacies in central and peripheral tolerance, 
follicular T helper cells specific for islet antigens are generated 
in the pancreatic lymphatic system and assist autoreactive B 
cells in producing islet autoantibodies. Peripheral T helper cells 
generate CXCL13, which draws B cells towards inflamed islets, 
and interleukin (IL)-21, which enhances B-cell differentiation 
and leads to local autoantibody synthesis. Activated B cells 
generate cytokines and can operate as APCs to encourage 
increased immunological activation.17) As a result of thymic 
plasma cell autoantibodies targeting certain medullary thymic 
epithelial cells for antibody-mediated apoptosis, the production 
of  T cells is increased, bypassing negative selection and 
accelerating the course of T1DM.18)

B- and T-cell precursors are further developed in the thymus 
after formation in the bone marrow (Fig. 1).19) Beta cells and 
other islet cells produce type I interferon, such as interferon, 
which prompts the recruitment of immune cells. One of the 
initial cells to react are macrophages, which are also the major 
cell type that produces tumor necrosis factors (TNFs).20) 
Macrophages, acting as APCs, present autoantigens to the 
lymphatic system. Naive autoantigen-specific T lymphocytes in 
pancreatic lymph nodes identify islet molecular components 
from injured cells presented by APCs from pancreatic cells. 
CD4+, CD8+, and dendritic cells engage with activated B cells. 
T lymphocytes recognize autoantigens and eventually evade to 
the periphery.21,22) Cell-specific T lymphocytes are activated by 
antigen presentation by dendritic cells and B cells. Autoreactive 
CD8+ and CD4+ T cells play significant roles in β-cell 
destruction by recognizing biomolecules of β-cell antigens 

Fig. 1. Type 1 diabetes mellitus autoimmunity pathophysiology.
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such as precursor preproinsulin, tyrosine phosphatase-like 
insulinoma antigen, islet-specific glucose-6-phosphate catalytic 
subunit-related protein, glutamic acid decarboxylase-65, and 
zinc transport.23-25) Additionally, B lymphocytes exposed to cell 
autoantigens produce islet-targeting autoantibodies. CXCR5+ 
antigen-specific follicular T helper cells promote autoreactive 
B cells to produce islet autoantibodies. Upon transition into 
peripheral T helper cells, a subpopulation of follicular T helper 
cells inhibits the expression CXCR5 and phosphorylates 
chemokine receptors CCR2, CCR5, and CX3CR1. 17,22) 
Immunologic components, which invade the islet of Langerhans 
and damage insulin-producing cells, produce an inflammatory 
setting resembling insulitis. This prompts and expedites the 
establishment of T1DM by enhancing the susceptibility of the 
immune system to islet antigens carried by human leukocyte 
antigen class I molecules.26,27) Immunological control imposed 
by regulatory T (Treg) cells and programmed cell death protein 
1 ligation protects β-cells against autoimmune β-cell apoptosis. 
Insufficient immunological control can cause autoreactive T 
cells to initiate an autoimmune attack in T1DM, especially if 
these cells are activated by β-cells.26) The destruction of insulin-
producing β cells in the islet of Langerhans results in progressive 
hyperglycemia.28)

Current prevention strategies for T1DM

Several T1DM prevention strategies have been tested in 
clinical trials (Table 1).29-41) Although several studies have 

found the potential effects of delaying T1DM onset, short 
effective durations and detrimental toxicities pose challenges 
in long-term administration. Diabetic pharmacological drugs 
function by targeting the major signal transduction pathways 
associated with diabetes pathogenesis. The other pillars of 
diabetic treatment are nonpharmacological methods including 
nutritional adjustment, physical activity, and microbiota-
based therapy.42) Both hydrolyzed infant formula and gluten-
free diet showed no significant effects in preventing the onset 
of T1DM.29,30) According to several immunological studies, 
early childhood encounter with complex specific proteins 
may raise the incidence of β-cell autoimmunity in biologically 
vulnerable individuals.43,44) Nevertheless, one study found that 
cow's milk protein plays no role in autoimmunity.29) Delaying 
gluten introduction in children also plays no role in the onset 
of T1DM.30) The use of vitamins such as vitamin B3, C, D, and E 
was to no avail.31-33)

The majority of randomized clinical studies examining 
type 1 diabetes-modifying medication have been undertaken 
in patients who had been clinically diagnosed with T1DM. 
Disease-modifying medications such as anti-CD3 monoclonal 
antibody, rituximab, abatacept, and alefacept substantially 
maintained insulin release while also exhibiting immunologic 
impacts.45-47) Only a few preventive clinical studies are available 
due to the challenges in sample selection. Patients with T1DM 
undergo lifetime exogenous insulin replacement treatment as 
first-line therapy from the moment of diagnosis.48) Insulin does 
not prevent or delay the onset of T1DM. Two clinical trials that 

Table 1. Clinical trials in delaying the onset of T1DM
Target Agent Findings Reference
Diet Hydrolyzed infant formula No reduction in T1DM incidence rate after 11.5 years 29)

Gluten-free diet Did not significantly lower the likelihood of islet autoimmunity in 
children who are genetically susceptible.

30)

Vitamins Niacinamide (vitamin B3) Treatment with niacinamide did not significantly reduce or postpone the 
onset of T1DM.

31)

Cholecalciferol (vitamin D) Neither vitamin D consumption nor 25(OH)D levels were linked to the 
likelihood of IA or the development of type 1 diabetes.

32)

Ascorbic acid and tocopherol (vita-
mins C and E)

Supplementation of vitamins C and E antioxidants did not enhance 
endothelial function, endothelial colony forming cells, and other 
unconventional risk factors.

33)

Hormones Oral insulin Over 2.7 years, oral insulin at a dosage of 7.5 mg/day, compared to 
placebo, did not prevent or postpone the onset of T1DM.

34,35)

Enzyme Alum-formulated glutamate decar-
boxylase

No influence on the development of type 1 diabetes 36)

TNF-α Inhibitor Golimumab The mean glycated hemoglobin levels were similar among the groups, 
but results indicated that golimumab was linked to an increase and 
longer duration of partial remission.

37)

Kinase inhibitors Imatinib Slowed decline of β-cells up to 12 months. This benefit did not last for 24 
months, and 71% of patients experienced grade 2 adverse side effects.

38)

Immune suppressant Azathioprine Azathioprine alone has little effect on the remission stage despite initial 
impacts on endogenous insulin production.

39)

Operative Fecal microbiota transplantation Plasma 1-arachidonoyl-GPC, Desulfovibrio piger inhibits autoimmunity 
in T1DM, impacting CXCR3+ T cells to an extent

40)

Pancreas transplant alone (PTA) PTA is supported as a viable treatment option by long-term effects on 
survival rates, transplant functionality, and the native kidneys.

41)

T1DM, type 1 diabetes mellitus; 25(OH)D, 25hydroxyvitamin D; TNF, tumor necrosis factor.
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differed in the assay method for autoantibody detection, micro 
insulin autoantibody assay versus radioimmunoassay, showed 
no benefit of oral insulin in preventing T1DM.34,35) Moreover, 
the use of alum-formulated glutamate decarboxylase also had 
no significant effects.36)

TNF-α is a cytokine implicated in the inflammator y 
process that is generated by activated macrophages, CD4+ 
lymphocytes, and natural killer cells. TNF-α production may 
cause loss of pancreatic β cells, leading to the onset of T1DM.49) 
Despite the lack of distinction between the groups in the 
concentration of glycated hemoglobin, the TNF-α inhibitor 
golimumab promoted improved indigenous insulin levels 
and decreased the need for insulin therapy when compared 
to placebo.37) Moreover, the kinase inhibitor imatinib showed 
promising results in only the early stages of administration.38) 
By addressing insulin resistance and endothelial dysfunction, 
tyrosine kinase inhibitors exhibit antihyperglycemic properties 
that have the potential to alleviate or prevent T1DM and type 
2 diabetes mellitus.50) In nonobese diabetic (NOD) mice, type 
1 diabetes can be prevented but not reversed with a modest 
dosage of sorafenib (10 mg/kg/day). However, when sorafenib 
is administered at high doses (50 mg/kg/day), the drug causes 
preexisting type 1 diabetes in NOD mice to reemerge. This 
narrow therapeutic window may be attributed to the inhibition 
of T helper 1 (Th1) and Tc1 cells in the islets of Langerhans.51) 
Similarly, the implementation of the immunosuppressant 
azathioprine immunosuppressant shows reconstructive 
insulin production but only in a transient manner.39) T-cell-

directed immunosuppression only momentarily prevents the 
deterioration of cellular functions. The finding that T-cell-
directed immune intervention results in either no or only 
temporary retention of cellular functions shows that this therapy 
does not substantially affect the pathogenesis of T1DM.52) Other 
operative approaches such as fecal microbiota transplantation 
and pancreas transplant alone have proven beneficial in 
preventing the occurrence of T1DM.40,41) Nonetheless, there 
remain concerns, such as the emergence of an instant blood-
mediated inflammatory reaction after operative measures, 
loss of islet volume and density owing to ischemia, islet cell 
apoptosis, and adverse immunosuppression drug side effects.53)

Dual actions of GABA to delay T1DM onset

The GABA receptor is a multiunit postsynaptic receptor 
with 5 components arranged around a central pore. The GABA 
receptor has 2 classes, GABAA and GABAB, characterized by 
distinct toxicological, electrophysiological, and biochemical 
features.54) GABA plays a significant role in both β cells and 
immune cells (Fig. 2). GABA receptor-mediated signaling 
involves adenylyl cyclase, voltage-gated Ca2+ channels, and G 
protein-activated inwardly rectifying K+ channels.55) Activation 
of GABAA receptors leads to an increase in calcium ions 
through L- and T-type voltage-gated calcium channels. For 
β-cell GABAB receptors, activation opens potassium channels, 
releases Ca2+ from intracellular storage, activates protein kinase 
A (PKA), and stimulates cyclic adenosine monophosphate 

GSK3

GSK3

Fig. 2. Dual pharmacodynamics of GABA in β-cells and immune cells. GABA, gamma-aminobutyric acid; GABAA R, GABA subtype A receptor; GABAB R, GABA subtype B 
receptor; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PIP2, phosphatidylinositol (4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; mTORC1, 
mammalian target of rapamycin complex 1; PKB, protein kinase B; PKA, protein kinase A; cAMP, cyclic adenosine monophosphate; CREB, cAMP-response element binding; 
GSK3, glycogen synthase kinase 3; ATP, adenosine triphosphate; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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(cAMP)-response element binding protein (CREB) through 
a Ca2+-dependent pathway.56) During maturation, GABAB 
receptor activation elevates calcium in specific neurons via 
protein kinase C stimulation.57)

GABAB receptor activation facilitates long-lasting (L-type) 
current and reduces current through N-type channels, 
promoting L-type calcium channels current via a non-Gi/o 
G protein. The Ca2+-dependent signaling pathway triggers 
phosphoinositide 3-kinase (PI3K)/phosphoinositide-
dependent kinase (Akt) signaling in response to calcium ion 
influx.58) In human β cells, GABA-induced Ca2+ activates the 
Akt pathway.22) PI3K catalyzes PIP3 (phosphatidylinositol 
(3,4,5)-trisphosphate) production, attracting signaling 
molecules with pleckstrin homology domains, such as protein 
kinase B and Akt.59) Induced Akt regulates the phosphorylation 
of multiple downstream effectors, including glycogen synthase 
kinase 3 (GSK3), caspase-9, mammalian target of rapamycin 
complex 1 (mTORC1), Bcl-2-associated death promoter (Bad), 
and forkhead box protein O 1 (FoxO1).60) Akt directly controls 
cell viability by suppressing pro-apoptotic pathways such as 
the Bad and FoxO1 transcription factors. FoxO1 proteins 
either stimulate or repress the transcription of target genes. 
By modifying the transcription of pancreatic and duodenal 
homeobox-1 (PDX-1), the PI3K/AKT/FoxO1 signaling pathway 
can control insulin production.61) Phosphorylation of Bad also 
inhibits the apoptotic effects formerly induced.62) Caspase 9 is a 
crucial activator of the mitochondrial signaling pathways and 
a critical pro-apoptotic regulatory protein downstream of the 
PI3K/Akt pathway. The PI3K/Akt signaling pathway prevents 
apoptosis by suppressing caspase 9 signal transduction.63) 
mTORC1 supports anabolic growth by stimulating protein, 
nucleotide, and lipid production while inhibiting catabolic 
mechanisms like autophagy through inhibition of Unc-51-
like kinase 1 and transcription factor EB. By stimulation of its 
downstream targets ribosomal protein S6 kinase beta-1 and 
eukaryotic translation initiation factor 4E-binding protein 1, 
mTORC1 stimulates protein synthesis. The PI3K/mTORC1 
pathway promotes β-cell development in human islets, and 
the addition of GABAA caused an increased β-cell area and 
multiplication.64)

GABAergic stimulation directly affects APCs, reduces MAPK 
signals, and reduces later adaptive inflammatory reactions to 
manage active autoimmune disorder.65) Among T1DM patients, 
GABA controls the concentration-dependent production 

of 47 pro- and anti-inflammatory cytokines.66) GABA may 
modify the immune system response to pathogens and play a 
role in autoimmune conditions such multiple sclerosis, type 1 
diabetes, and rheumatoid arthritis. Several clinical trials have 
proven that GABA projects a variety of impacts on the immune 
system, including activating or suppressing cytokine release, 
altering cell proliferation, and influencing cell migration.67) 
Specific depolarizing channel activation occurs in immune 
cells as most have ligand-specific gates, such as glutamate 
receptors and GABAA receptors, which have been found to 
affect both L- and T-type calcium channels.68) Adenylate cyclase 
is a class of enzymes that catalyzes the synthesis of cAMP 
from adenosine triphosphate and is presumably controlled 
by a component of the Ca2+-signaling cascade.69) Similarly, 
by means of intermediate processes involving intracellular 
second messengers, a GABAB receptor agonist upregulated 
basal resting adenylyl cyclase function and facilitated cAMP 
production. Additionally, cAMP is a significant down-regulator 
of T-cell function by reducing T-cell immunological activity via 
the cAMP/PKA/C-terminal Src kinase/lymphocyte-specific 
protein tyrosine kinase signaling cascade.70) The transcription 
factor CREB is generated by PKA. Cell growth, maturation, 
and survival are all regulated by CREB. CREB regulates T-cell 
activity and promotes Treg production and stability. Moreover, 
CREB has been demonstrated to promote transcription of 
CRE-containing immune-related cytokines such as IL-2, IL-6, 
IL-10, and TNF-α.70) Additionally, PKA-dependent activation 
has the potential to downregulate nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) activity. Several 
studies have proven that increased NF-κB activity is associated 
with the pathogenesis of autoimmunity, and downregulating 
this transcription factor would pose therapeutic benefits.71) The 
stimulation of GABAB receptor resulted in the suppression of 
GSK3 expression, which restricted NF-κB activity.72) Given its 
numerous roles in cell physiology in T1DM, cAMP has a wide 
range of modulatory associations on a spectrum of immune 
cells (Table 2).66,73-79) Several studies show that in children who 
eventually developed T1DM, dysregulation of the GABA 
metabolism and other circulating metabolites occurred before 
pancreatic islets autoimmunity.80) Autoimmunity may therefore 
be a late reaction to the preceding metabolic abnormalities; thus, 
adhering to metabolic needs could be an effective delaying or 
preventive measure.

Table 2. Immunoregulatory effects of GABA
Immune cells GABA outcome Reference
Macrophage Downregulate proinflammatory IL-12 and IL-6 production 73)

T cells Decrease proliferation of CD4+ and downregulate IFN-γ, Flt3L, TRAIL, TNF-β, PD-L1, and IL-10 production 66,74)

Natural killer cells Decreased cytotoxicity and cytokine release in vitro and target cell lysis inhibition by perforin and CD95 
ligand

75-77)

Dendritic cells Mitogen-activated protein kinases are increased, cytokine actions are modulated, and production of anti-
inflammatory cytokine IL-10 is encouraged

78,79)

B Cells The immunomodulatory effects of GABAergic constituents in B cells and granulocytes are poorly understood. 75)

GABA, gammaaminobutyric acid; IL, interleukin; IFN, interferon; Flt3L, Fmslike tyrosine kinase 3 ligand; TRAIL, TNFrelated apoptosis 
inducing ligand; TNF, tumor necrosis factor; PDL1, programmed death ligand 1.



147

Sutedja JC, et al. • GABA in delaying T1DM: an update

www.e-apem.org

GABAB receptor agonist in children

Previous studies suggested that by stimulating cell prolifera-
tion and survival through the activation of the PI3-K/Akt 
pathway, GABA is able to delay and reverse the onset of T1D.81,82) 
GABA is also able to exert immunoinhibitory effects, precisely 
by suppressing the activity of Th1 cells against islets, cytotoxic 
cells; suppressing lymphocyte proliferation and the activation of 
NF-κB; and increasing the number of Treg cells.83) GABA is also 
able to inhibit the secretion of glucagon and has been suggested 
to have the ability to induce transdifferentiation of α-like cells 
into β-like cells by acting on the GABAA receptor with the 
assistance of gephyrin. This results in islet hyperplasia.84) An 
experiment showed that GABA-induced differentiation of 
pancreatic stem cells into insulin-producing islet cells; this was 
proven by the positive immunostaining results of PDX-1.85) 
PDX-1 and NKx6.1 are 2 of the major markers in β cell lineage 
investigations.86)

Multiple studies conducted in vivo have shown a potentially 
positive effect of GABA administration in inducing remission 
or delaying the onset of T1DM (Table 3). A study in female 
NOD mice has proven the effect to be dose-dependent as 
lower doses of lesogaberan (0.025 mg/mL in drinking water) 

did not produce any significant improvement. The therapeutic 
effect between doses of 0.25 and 0.75 mg/mL showed little 
variance.87) Other studies also identified a dose-dependent 
relationship between GABA administration and delayed onset 
of T1DM.88,89) NOD/SCID mice were given GABA treatment 
prior to the transfusion of diabetogenic splenic cells. These 
results show that GABA prevents adoptive transfer of T1DM. 
GABA also delays T1DM progression in 6-week-old prediabetic 
NOD mice with autoimmunity. After treatment, at 40 weeks 
of age, none of the mice were found to be hyperglycemic. The 
research also suggested that GABA suppresses Th1 activity 
against islet antigens and consequently inhibits the proliferation 
of autoreactive T cells.88) Another study conducted in NSG 
mice induced with diabetes using streptozotocin showed 
that oral GABA administration stimulates increase in the 
mass of β cells, proven by an approximate fivefold increase of 
β-cell multiplication. The study also concluded that GABA 
treatment increases insulin levels and exerts protective effects 
against apoptosis of β cells.56) Similar conclusions were drawn 
from another study conducted in NOD/SCID mice in which 
GABA enhanced islet β-cell proliferation and inhibited β-cell 
apoptosis.8) A different study conducted in 8-week-old male 
FVB mice showed that oral administration of  muscimol 

Table 3. Effects of GABA in vivo
Subject Route Dosage Duration Results Reference
Female NOD mice Oral 0.025, 0.08, 0.25, 0.75 

mg/mL of lesogaberan 
(AZD3355)

Up to 28 weeks post 
onset of T1DM

0.025 mg/mL: no significant improve-
ment

0.08 mg/mL: around 50% experienced 
transient remission

0.25 or 0.75 mg/mL: remission for an 
average duration of 4.4 and 5.8 weeks 
consecutively

87)

6  a n d  2 0  we e k s  o l d 
female NOD or SCID 
mice

Pellet implantation 600 μg/day 90 Days D e layed  onset  o f  T1DM,  lowered 
incidence of T1DM, no signs of hyper-
glycemia at 40 weeks of age

88)

Male NOD-SCID-γ (NSG) 
mice

Oral 6 mg/mL 5 Weeks GABA administration enhanced β-cell 
proliferation by a factor of about five

56)

2.5 to 10 months old 
wild-type mice

Intraperitoneal (IP) 
injection

250 μg/kg/day 1–6 Months Doubled number of is lets in mice, 
directly propor t ional  increase of 
insulin-producing cells with duration of 
treatment, increase in β-like cell mass

89)

NOD/SCID mice Oral 6 mg/mL 12 Days Increases proliferation and restricts 
apoptosis of β cells

8)

Six adult male subjects 
with chronic T1DM

Oral 200, 600, 1,200 mg/day 11 Days No severe adverse effects (AEs) were 
reported, while mild and transient AEs 
occurred

5)

Eight-week-old male 
FVB mice

Oral 6 mg/mL of muscimol 
or baclofen

6 Weeks Muscimol: increased β-cell multiplication 
by 27%±10%

Baclofen: increased β-cell multiplication 
by 47%±16% and α-cell multiplication 
by 72%±21%

90)

Male NSG mice Oral 6 mg/mL 10 Weeks Increased expression of pancreatic 
and duodenal homeobox-1 and NK6 
homeobox 1, reduced apoptosis of 
β-cells to around 0.5%, increased 
number of β-cells and insulin levels 
and enhanced glucose homeostasis

86)

GABA, gammaaminobutyric acid; NOD, nonobese diabetic; T1DM, type 1 diabetes mellitus; SCID, severely combined immunodeficient. 
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(GABAA receptor agonist) and baclofen (GABAB receptor 
agonist) increased proliferation of β cells by 27%±10% and 
47%±16% respectively. Baclofen also increased proliferation 
of α-cells by 72%±21%.90) Increased expression of PDX-1 and 
NKx6.1 were found in another study, indicating increased 
proliferation of β cells. Beta-cell rate of apoptosis also decreased 
to around 0.5% as compared to 1.5% in untreated mice and 
GABA and insulin levels increased.86) A clinical trial proposed to 
examine the safety and efficacy of GABA in delaying the onset 
or progression of T1DM in children is currently undergoing 
phase I clinical trial.91)

Adverse effects and limitations of GABA 
treatment

The highest concentration of GABA is found in approxi-
mately 30% of the brain's neurons and is found in the pancreas 
at similar levels.92) GABA is a cerebral neurotransmitter 
inhibitor which makes CNS depression a frequent adverse 
effect (AE).93) However, oral administration of GABA has been 
proven to be safe and effective in vivo, oral administration leads 
to peripheral action and prevents crossing of the blood-brain 
barrier.83)

The United States Pharmacopeia conducted a review on the 
safety of GABA. GABA treatment is associated with a brief 
mild drop (<10%) in blood pressure, abdominal discomfort, 
headaches, drowsiness, and a brief burning sensation in the 
throat. All AEs reported ranged from mild to moderate. Multiple 
clinical studies on GABA use have reported no serious AEs. 
Importantly, GABA treatment is discouraged in pregnant and 
breastfeeding women as GABA may cause an increase in growth 
hormone and prolactin levels. However, no specific studies have 
mentioned negative effects94). That sudden cessation of therapy 
may lead to withdrawal symptoms is also important to note.95)

Conclusions

Despite substantial advancements in technology, knowledge 
gaps remain in the understanding and management of T1DM. 
Multiple preclinical and clinical studies have been conducted to 
test the potential use of GABA in delaying T1DM, especially in 
high-risk groups such as children with genetic predisposition 
for T1DM. GABA exerts dual action on both islet β cells and 
immune cells. The studies discussed in this article have shown 
regenerative and protective effects on islet β cells. GABA 
induces proliferation of β cells and inhibits β-cell apoptosis. No 
serious AEs related to GABA treatment were reported. These 
GABA study results create optimism in its potential to delay the 
onset of T1DM in children.
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